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Abstract

Abstract We study the behavior of a cluster-robust t statistic and
make two principle contributions. First, we relax the restriction of previ-
ous asymptotic theory that clusters have identical size, and establish that
the cluster-robust t statistic continues to have a Gaussian asymptotic null
distribution. Second, we show how cluster heterogeneity governs the be-
havior of the test statistic. To do so, we develop the e¤ective number of
clusters, which scales down the actual number of clusters by a measure
of three quantities that vary over clusters: cluster size, the cluster spe-
ci�c error covariance matrix and the actual value of the covariates. The
implications for hypothesis testing in applied work are: 1) the number
of clusters, rather than the number of observations, should be reported
as the sample size, and 2) for data sets in which there is variation in the
cluster sizes, or where a cluster-level covariate shows little variation across
clusters, the e¤ective number of clusters should be reported. If the e¤ec-
tive number of clusters is large, then testing based on critical values from
a normal distribution is appropriate.
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1 Introduction

In conducting inference with a cluster-robust t statistic, researchers often rely
on the result that the statistic has a Gaussian asymptotic null distribution. The
existing result is derived for the speci�c case in which clusters are equal in size.
Because in many applications clusters are unequal in size, there is a gap between
the existing result and empirical practice. We �ll this gap by establishing
that the conventional cluster-robust t statistic has a Gaussian asymptotic null
distribution for the more general case in which clusters can vary in size. In
so doing, we determine a sample speci�c measure of cluster heterogeneity that
governs the behavior of this cluster-robust t statistic. From the sample speci�c
measure we construct the e¤ective number of clusters, which scales down the
actual number of clusters by the measure of cluster heterogeneity. It is the
e¤ective number of clusters that governs inference: If the e¤ective number of
clusters is large, then Gaussian critical values are appropriate.
The conventional cluster-robust t statistic is based on the ordinary least

squares coe¢ cient estimator from the entire sample, together with a cluster-
robust variance estimator based on the outer product of the residuals.1 The
original asymptotic theory, due to White (1984, Theorem 6.3, p. 136), applies
to clusters of equal size that satisfy a further assumption of cluster homogeneity.
Under cluster homogeneity White establishes two principle results. First, that
the cluster-robust t statistic has a Gaussian asymptotic null distribution. Sec-
ond, that the variance component, which appears in the denominator of the test
statistic, is consistently estimated through the use of the cluster-robust variance
estimator. Consistent estimation of the variance component is also established
in Hansen (2007), who maintains the assumption that clusters have equal size
while relaxing White�s further assumption of cluster homogeneity. We allow
both for unequal cluster size and for heterogeneity of clusters. Under these more
general assumptions we establish that the cluster-robust variance estimator can
be used to consistently estimate the variance component that appears in the
denominator of the test statistic. We further establish that the cluster-robust
t statistic has a Gaussian asymptotic null distribution.
To understand why variation in cluster sizes impacts the behavior of the

cluster-robust t statistic, consider a sample of 20 observations divided into two
clusters. Because observations are assumed to be independent across clusters,
the number of nonzero elements of the error covariance matrix are all contained
within the diagonal blocks that capture the correlation within clusters. If the
clusters are equally sized, there are 110 potentially unique terms. As the size
of one cluster grows, the number of elements of the error covariance matrix
grows and reaches a maximum of 191 when one group contains 19 observations.
Variation in cluster size, keeping �xed the total number of observations, alters
the number of non-zero error covariance terms. Because each of these non-
zero terms must be accounted for to avoid upward bias in the test statistic, as
Kloek (1981) was among the �rst to show, the behavior of the cluster-robust t

1 In what follows we refer to this test statistic simply as the cluster-robust t statistic.
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statistic is impacted by variation in cluster size. Cameron, Gelbach and Miller
(2008) �nd via simulation that for a small number of clusters, allowing clusters
to have di¤ering numbers of observations can substantially increase the size of
a cluster-robust t test.
As we will show, use of the outer product of the residuals implies that the

cluster-robust variance estimator is a function only of between cluster variation
and, hence, that consistency of the variance estimator requires that the number
of clusters grows without bound. Thus the number of clusters is the appropriate
measure of the sample size. One immediate consequence is that it is not pos-
sible to conduct valid inference on cluster �xed e¤ects with the cluster-robust t
statistic. With a �xed e¤ect limited to a single cluster the variance of the �xed
e¤ect is estimated from a sample of size 1, so the estimator of the variance is
undetermined.
Because estimation and inference in practice are conditioned on the observed

value of the covariates, the measure of cluster heterogeneity we derive is speci�c
to each sample. The measure depends on how three quantities vary over clus-
ters: cluster size, the cluster speci�c error covariance matrix and the observed
value of the covariates. The measure of cluster heterogeneity scales down the
number of clusters to produce the e¤ective number of clusters. A low e¤ective
number of clusters leads to a higher mean-squared error for the cluster-robust
variance estimator, which in turn a¤ects the behavior of the cluster-robust t
statistic.
The e¤ective number of clusters can be thought of as a generalization of the

correction formula reported in Moulton (1986). The correction formula, which
requires that all observations be equally correlated within clusters, indicates how
to increase standard error estimators to account for neglected cluster correlation.
The e¤ective number of clusters, which does not require equal correlation of all
observations within clusters, does not alter the cluster-robust standard error
estimator but rather alerts the researcher to the need for conservative critical
values. The need to report the e¤ective number of clusters is not restricted to
data sets with unequal cluster sizes. For example, data sets with equal cluster
sizes but where most clusters have the same value for a cluster-level covariate
can have an e¤ective number of clusters that is dramatically smaller than the
actual number of clusters, which emphasizes the need to report the e¤ective
number of clusters when reporting a cluster-robust t statistic.
Through simulation we demonstrate this point and �nd that in many set-

tings, while cluster heterogeneity reduces the e¤ective number of clusters, the
reduction results in only a moderate increase in the rejection rate for the test.
In these cases, a researcher can report the e¤ective number of clusters and pro-
ceed with Gaussian critical values. For settings with severe heterogeneity and
substantial cluster correlation, the e¤ective number of clusters can fall well be-
low 20. When this is the case we �nd a downward bias in the cluster-robust
standard errors, which in turn leads to rejection rates of up to 30 percent for
a nominal size of 5 percent. In practice calculation of the e¤ective number of
clusters depends on the unknown error correlations. We show how to overcome
this di¢ culty through use of an approximate measure that depends only on the
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observed covariates and cluster sizes. The simulations reveal that the approxi-
mate measure, while conservative, closely tracks the e¤ective number of clusters
in precisely the situations where the calculation is of most importance, namely
where correlation within clusters is substantial.
The paper is organized as follows. In Section 2 we de�ne the general class of

models under study and de�ne the measure of cluster heterogeneity. We relate
the measure to the mean-squared error of the cluster-robust variance estimator,
establish that the asymptotic null distribution of the cluster-robust t statistic
is Gaussian and show that consistent testing of �xed e¤ects is not possible. In
Section 3, we de�ne the e¤ective number of clusters and emphasize, through
simulation, that the e¤ective number of clusters is a sample speci�c measure
that varies with the coe¢ cient under test. For several empirical settings we
report an e¤ective number of clusters for the key hypotheses under test and
discuss appropriate inference, in Section 4. While not our principle focus, we
discuss how to select conservative critical values in Section 5.

2 Asymptotic Behavior

We consider a set of n observations from the linear model

y = X� + u; (1)

where the covariate matrix X consists of k linearly independent columns. The
key feature of the model is that the observations can be sorted into G clusters,
where the errors are independent between clusters. Hence the covariance matrix
of u, given X, 
 is a block-diagonal matrix where each diagonal block 
g is the
covariance matrix for cluster g. Because 
 is block diagonal, the variance of the
ordinary least squares estimator �̂ can be written as the sum of the G cluster
speci�c variance components. We have

V := V ar
h�
XTX

��1
XTu

���Xi = GX
g=1

V ar
h�
XTX

��1
XT
g ug

���Xi ;
where Xg and ug are the covariate matrix and error vector for cluster g, respec-
tively.
The hypotheses under test are formed from subsets of the coe¢ cients in

(1). The general form of null hypothesis is H0 : aT� = aT�0, where a is a
selection vector of dimension k. Because any factor that multiplies the selection
vector cancels out of the test statistic, we assume without loss of generality that
kak2 = 1, where kak is the Euclidean norm of the vector a. The cluster-robust
t statistic is

Z =
aT
�
�̂ � �0

�
rdV ar �aT�̂� ; (2)

4



where the variance component is dV ar �aT�̂� = aT bV a and bV is the cluster-

robust variance estimator. The cluster-robust variance estimator, which Shah,
Holt and Folsom (1977) are among the �rst to use, is the sample analog for V
where the observed residuals ûg replace the errors ug:

bV = �XTX
��1 GX

g=1

XT
g ûgû

T
gXg

�
XTX

��1
: (3)

White establishes asymptotic results for the cluster-robust t statistic and for
the variance component bVa := aT bV a. White�s proof has two key assumptions:
1) that all clusters have an identical, �xed, number of observations and 2) that
E
�
XT
g 
gXg

�
not vary over g. He then proves that, if G!1 as n!1 then

Z has a Gaussian asymptotic null distribution and bVa is a consistent estimator
of Va. We relax both of White�s key, cluster homogeneity, assumptions. We
allow the cluster size, ng, to vary: over clusters, so that clusters need not be of
identical size, and to vary with the sample size, so that cluster sizes need not
be �xed. We also allow E

�
XT
g 
gXg

�
to vary over g. We then prove that, if

G!1 as n!1, then Z has a Gaussian asymptotic null distribution and bVa
is a consistent estimator of Va.
Because 
g is restricted only by the requirements of a positive de�nite ma-

trix, the test statistic Z is robust to a wide range of correlated processes. But
this general robustness has an important implication: bV is a function only of
between cluster variation. It immediately follows that �rst, consistency of bV
requires that the number of clusters grow without bound, and second, that the
behavior of Z, even for hypothesis tests of coe¢ cients on covariates that vary
within clusters, is governed by the number of clusters, not the total number of
observations.2

To establish these facts, we �rst show that the variance of �̂ can be ex-
pressed as a weighted sum of the variances for the ordinary least squares esti-
mators based only on the observations for cluster g, �̂g. We then show that

it follows that bV is a function only of between cluster variation, where between
cluster variation corresponds to the di¤erence between the cluster speci�c means�
XT
1 �̂1; : : : ; X

T
G�̂G

�
and the overall mean XT�̂. We collect these �ndings in

the following result (algebraic details that verify the result are contained in the
Appendix).

Result 1:
a) The covariance matrix V , together with the estimator bV , can be expressed
as functions of �̂g:

V =
X
g

AgV ar
�
�̂g

���X�ATg ; (4)

2 If the researcher groups observations into clusters to allow for the possibility of cluster
correlation, then, even if the observations are independent, the number of clusters must grow
to in�nity for consistency of bV .
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bV =X
g

Ag

�
�̂g � �̂

��
�̂g � �̂

�T
ATg ;

where Ag =
�
XTX

��1
XT
g Xg.

b) Furthermore,
�
�̂g � �̂

�
isolates the variation between clusters from the vari-

ation within clusters, so the estimator bV is not a function of within cluster
variation.

Remarks: The cost of the general robustness of Z, even under cluster ho-
mogeneity, is re�ected in Result 1b. Because bV is a function only of between
cluster variation (and the design through Ag), consistency of bV requires that the
number of clusters grow without bound. Thus, to ensure we have a consistent
test, we require that the selection vector a include only covariates for which the
number of clusters in which the covariate takes non-zero values grows without
bound. Corollary 1, below, formalizes this remark.
Importantly, we establish consistency of bVa=Va rather than bVa� Va. We do

so because if �̂ is a consistent estimator of �, then the elements of V converge to
zero and do so at a rate that depends on the behavior of the cluster sizes. The
rate of convergence of V to zero must be explicitly accounted for in bVa � Va,
while it is implicitly controlled in bVa=Va. This point is clearly revealed in
Hansen, who studies bVa � Va and so must establish separate results depending
on the rate at which ng grows with the sample size. Under the assumption
that clusters have an identical number of observations, but where E

�
XT
g 
gXg

�
is allowed to vary over g, Hansen establishes that bVa is a consistent estimator
of Va for two rates of growth of ng. The situation becomes more complex if ng
varies over g, as the appropriate result depends on assumptions governing the
growth of speci�c cluster sizes. Through study of bVa=Va we avoid the need for
rate-speci�c results and our theorem accommodates a wide range of behavior
for ng.
The estimator bVa can be decomposed into two parts, one of which contains

no bias, so that bVa � Va
Va

=
eVa � Va
Va

+
bVa � eVa
Va

;

where eVa is constructed from the unbiased function

eV =X
g

Ag

�
�̂g � �

��
�̂g � �

�T
ATg :

(We note that eV is equivalently represented as the right side of (3) with ug in
place of ûg.) One heuristic for understanding the decomposition of the error

in the estimator is that
�
�̂g � �

�
is likely to be much larger than

�
�̂ � �

�
.

As a result, our estimator that is a function of
�
�̂g � �̂

�
has an error that is

mostly dependent on
�
�̂g � �

�
, as in eV . However, the bias of the estimator is
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E
�bVa � eVa�, which is the bias of the second term in the decomposition.

To establish consistency for bVa we will show that both ��� eVa�VaVa

��� and ��� bVa�eVaVa

���
converge to 0. We do so in a way that allows us to determine the sample speci�c
features that govern the performance of the cluster robust variance estimator.
In Lemma 1 we bound the mean-squared error of

eVa�Va
Va

conditionally on X,

which captures the main contribution to the variance of bVa. In Lemma 2 we

bound the expectation of
��� bVa�eVaVa

��� conditionally on X, which captures the bias ofbVa. We use these bounds in Theorem 1 to derive the unconditional asymptotic
null distribution of the test statistic.
We prove the results under moment assumptions on the (conditional) distri-

bution of the error. In Lemma 1 we show how the results simplify if the error
has a conditionally normal distribution.

Assumption 1: Conditional on the covariate matrix X, the distribution of
the error vector u satis�es:
(i) u has mean zero.
(ii) ug satis�es a fourth-order moment condition; speci�cally there exists an

g such that ug = 


1=2
g Zg with fZgg a sequence of uncorrelated random vari-

ables that satisfy E (ZgiZgjZgkZgl) = 0, E
�
ZgiZgjZ

2
gk

�
= 0, E

�
ZgiZ

3
gj

�
= 0,

E
�
Z2giZ

2
gj

�
= 1, and EZ4gi �M4. This implies Eu4i <1.

(iii) u is independent across clusters and has a block diagonal covariance ma-
trix 
. Speci�cally, the error vector can be heteroskedastic and have cluster
correlation that varies both within and across clusters.

Lemma 1: Under Assumption 1,

E

8<:
" eVa � Va

Va

#2������X
9=; � 1 + � (
; X)

G

�
2 +

M4 � 3
n�

�
;

where n�is de�ned in the appendix (under cluster homogeneity n� = n=G) and
the quantity � is de�ned by

g (
; X) = aTAgV ar
�
�̂g

���X�ATg a;
� (
; X) =

1

G

GX
g=1

�
g � �

�2
�2

;

with � := � (
; X) = 1
G

P
g (
; X).

3 If Assumption 1(ii) is strengthened to u
is normally distributed, then

E

8<:
" eVa � Va

Va

#2������X
9=; =

2

G
(1 + � (
; X)) :

3Because the researcher selects a through speci�cation of the null hypothesis, we do not
explicitly include a as an argument in � (
; X).
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Proof: See Appendix.

Remarks: Because eVa is unbiased for Va, the (relative) mean-squared error in
Lemma 1 consists entirely of the variation in eVa. The quantity � (
; X), which
is the squared coe¢ cient of variation for  (
; X), is the measure of cluster
heterogeneity that drives the variation in eVa. To see this, for u normally

distributed if � (
; X) = 0, then eVa � �2(G) and E
�h eVa�Va

Va

i2����X� = 2
G . If

� (
; X) 6= 0, then eVa � �2(G) and the mean-squared error increases by the factor
(1 + � (
; X)).

We next bound the bias of
bVa
Va
; below we will establish that

bVa�eVa
Va

is oP (1)
and so the bias vanishes asymptotically.

Lemma 2: Under Assumption 1,

E

("����� bVa � eVaVa

�����
#�����X

)
� 1

G
+
1

Va
aT

GX
g=1

"�
Ag �

1

G
I

�
V

�
Ag �

1

G
I

�T#
a+

+2

 
1

Va
aT

GX
g=1

"�
Ag �

1

G
I

�
V

�
Ag �

1

G
I

�T#
a

! 1
2

:

Proof: See Appendix.

We are now able to establish our principle asymptotic result that the cluster-
robust test statistic has an (unconditional) Gaussian asymptotic null distribu-
tion.

Assumption 2:
(i) As n!1 the number of clusters is increasing, G!1.
(ii) As G!1, E[�(
;X)]G ! 0.

(iii) As n!1, 1
Va
aT
PG

g=1

h�
Ag � 1

GI
�
V
�
Ag � 1

GI
�Ti

a
P! 0:

LetW be the class of error distributions that satisfy Assumptions 1 and 2. The
null hypothesis is H0 : aT� = aT�0, where the error distribution belongs to the
class W .

Theorem 1: If Assumptions 1-2 hold, then bVa is a consistent estimator of
Va and, under H0:

Z  N (0; 1) ;

where  denotes convergence in distribution.

Proof: See Appendix.

Remarks: Assumption 2 governs the heterogeneity across clusters as well as
the growth rate of cluster sizes. The possible growth rates of cluster sizes are
governed by Assumption 2(i)-(ii). The allowable heterogeneity across clusters
is contained Assumption 2(ii)-(iii).
For the growth rate of cluster sizes, Assumption 2(i) rules out the case

in which all clusters remain a constant proportion of the sample as n grows,
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because the number of clusters must go to in�nity. Assumption 2(ii) rules
out the case in which any of the clusters remains a constant proportion of the
sample as n grows, but does allow cluster sizes to grow with n. Because,

in general, V ar
�
�̂g

���X� = OP

�
1
ng

�
and V ar

�
�̂
���X� = OP

�
1
n

�
, the quantity�g � ��2 = OP

�
n2g
n2

�
and E[�(
;X)]

G = O
�
nmaxg

n

�
, where nmaxg is the size of

the largest cluster. Thus, if nmaxg = o (n), then Assumption 2(ii) is satis�ed
and, hence, Theorem 1 encompasses both the case in which cluster sizes are
�xed as the number of clusters grows and cases in which the cluster sizes and
the number of clusters go to in�nity jointly.
Assumption 2(ii) governs the heterogeneity arising from 
 while Assumption

2(iii) governs the heterogeneity arising from variation in the covariate matrix X.
It may be helpful to relate Assumption 2(ii)-(iii) to earlier work in which cluster
heterogeneity is considered. While it is di¢ cult to relate these conditions
to the work of Hansen, who does not have an explicit condition controlling
cluster heterogeneity, it is possible to relate these conditions to the work of
Rogers (1993). Although he does not derive an asymptotic null distribution,
Rogers conjectured that a Gaussian approximation would be adequate for Z if
max

ng
n < :05. To link the conjecture to Assumption 2(ii), consider a model with

only an intercept and common intracluster correlation, so that g = �
2
�ng
n

�2
.

We see that the adequacy of a Gaussian approximation does depend on ng
n ,

albeit through the squared coe¢ cient of variation, rather than the maximal
value.
Under Assumption 2(iii) problematic designs, in which XTX is (nearly) sin-

gular, occur with negligible probability. Assumption 2(iii) principally governs
heterogeneity arising from the covariate matrix X. Observe that if all the el-
ements of � are consistently estimated, it is useful to write Assumption 2(iii)
as

��V
Va

GX
g=1

aT�Ag � 1

G
I

�2 P! 0 as n!1;

where ��V is the largest eigenvalue of V . From this expression it is clear that
heterogeneity enters only through the covariate matrix. Assumption 2(iii) also
allows for models with coe¢ cients that are not consistently estimated (e.g. clus-
ter �xed-e¤ect coe¢ cients where ng does not grow with n, so the variance of
the estimators does not converge to zero). Assumption 2(iii) requires that the
selection vector a assign zero weight to these coe¢ cients, so that Theorem 1
applies to models that contain nuisance coe¢ cients that are not consistently
estimated.
Moreover, it is not possible to consistently estimate the variance of cluster

�xed-e¤ect coe¢ cients with bV as de�ned in (3), even if the coe¢ cients are
consistently estimated.

Corollary 1:
If Assumption 1(ii) is strengthend to u is normally distributed, then for

coe¢ cient estimators that depend only on a �xed subset of clusters, the elements
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of bV that correspond to these estimators are inconsistent.

Proof: Because bV is a function only of between cluster variation, consistency
of bV requires information from a growing number of clusters. If a coe¢ cient
estimator depends only on a �nite set of clusters, the requirement is not met.
Consider a covariate that takes non-zero values for a �xed subset m of the
clusters. (For a cluster speci�c control, m = 1.) The element of Ag that
corresponds to this covariate is zero for all clusters other than the set of m,
so g is nonzero on m elements. Hence � is O

�
m
G

�
and � is O

�
G
m

�
, so that

1
G� = O

�
1
m

�
which does not tend to zero as G!1. Q.E.D.

We expect that Corollary 1 generally holds for non-normal errors as well. Lead-
ing examples of such covariates are cluster speci�c controls (most often termed
cluster �xed e¤ects), controls that correspond to a group of clusters, and, for
a model in which only one cluster is treated, the coe¢ cient on the treatment
covariate.

3 E¤ective Number of Clusters

We have established conditions under which the cluster-robust variance esti-
mator bV is consistent and the test statistic Z has a Gaussian asymptotic null
distribution. We now turn to the question: How should a researcher use the
results to inform empirical analysis? An important component to the answer
for this question is contained in Lemma 1, where we establish that the relative
mean-squared error of eVa is inversely proportional to

G� =
G

1 + � (
; X)
:

From the proof of Theorem 1 the leading term that governs the asymptotic
behavior of bVa=Va corresponds to the relative mean-squared error of eVa, so G�
is the key measure of the adequacy of the asymptotic results. Further, becauseeVa is unbiased, this analysis reveals that the variance of bVa plays an important
role in the �nite sample behavior of bVa.
We refer to G� as the e¤ective number of clusters to re�ect the fact that the

results in Section 2 extend the conventional analysis (under cluster homogeneity)
in which the number of clusters is the measure of the adequacy of the asymptotic
results. To calculate G�, recall from Lemma 1 that

� (
; X) =
�̂2
�2
;

where �̂2 =
1
G

PG
g=1

�
g � �

�2
. Because � (
; X) � 0, G� � G so that the

e¤ective number of clusters is no larger than the actual number of clusters.
Importantly the magnitude of the di¤erence between G� and G increases non-
linearly in the measure of cluster heterogeneity � (
; X). To construct � (
; X)
note that the cluster-speci�c component g, de�ned in Lemma 1, can also be
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written as
g = a

T
�
XTX

��1
XT
g 
gXg

�
XTX

��1
a: (5)

From this expression we see that XT
g 
gXg is the quantity that drives cluster

heterogeneity, so variation in cluster size is not required for cluster heterogene-
ity. Cluster heterogeneity can arise with clusters of equal size, but where the
cluster error covariance matrix di¤ers over clusters. Moreover, even if 
g is
identical across clusters, the fact that the covariates di¤er over clusters induces
heterogeneity. For this reason the vast majority of empirical analyses with
cluster-robust inference are characterized by heterogeneous clusters.
To construct G� in practice, one must approximate the unknown error co-

variance matrix 
. It is tempting to use the estimated residuals to replace 
g
with b
g = bugbuTg . Yet b
g has already been used to construct the test statistic
Z, so using the same data to approximate G� would lead to dependence between
Z and the critical value for Z. Dependence between a test statistic and the
critical value used in the test is di¢ cult to account for when determining the
size of a test. To avoid this dependence we approximate 
g with a matrix that
is not constructed from the data. We replace 
g with a matrix of ones, which
corresponds to perfect correlation between all observations within a cluster. If
all observations are perfectly correlated within a cluster, then the information
contained in the cluster is reduced to the information contained in any one
observation and so our approximation may be conservative for G�. Let G�A

be a feasible version of G� with this approximation, so G�A is constructed by
replacing g with

Ag = a
T
�
XTX

��1
XT
g

�
�g�

T
g

�
Xg
�
XTX

��1
a;

where �g is a vector of length ng with each element equal to one.
To illustrate how variation across clusters a¤ects hypothesis testing in em-

pirical settings we turn to simulations. The simulations reveal to what degree
certain characteristics in the data cause the size of the test to rise above the
nominal level. Moreover, we are able to suggest a threshold for the feasible
e¤ective number of clusters, such that if the computed feasible e¤ective number
of clusters is above the threshold then it is appropriate to use critical values
from the normal distribution. The simulations also provide further insight into
how cluster sizes, the distribution of the covariates, and the properties of the
error all translate into cluster heterogeneity as re�ected in the e¤ective number
of clusters.
The data generating process is

ygi = �0 + �1xgi + ugi; (6)

together with the error-components model

ugi = "g + vgi; (7)
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where the cluster component "gjX � i:i:d: N (0; 1) is independent of the indi-
vidual component vgijX � N

�
0; cx2gi

�
.4

A useful way to capture cluster heterogeneity is to allow the cluster sizes to
vary. This allows one to compare the simulated designs to data sets used
in empirical research. In each of our experimental designs there are 2500
observations divided into 100 clusters. The �rst design places 25 observations
in each cluster. In each succeeding design the size of the �rst cluster grows, as
observations are moved from clusters 2 through 100 into the �rst cluster. To
keep track of the growing cluster heterogeneity, we calculate the coe¢ cient of
variation for the cluster sizes and use this to index the designs in our graphs.
(In the Appendix we describe the designs, together with the other settings of
the simulations, in detail.)
While the feasible e¤ective number of clusters depends only on the design

matrix X, the test size depends on the speci�cation of the error. Perhaps
the most important feature of the speci�cation is the value of c. Consider an
arbitrary pair of observations, i and j, that are in the same cluster. Because
the correlation between these two observations is

Corr (ugi; ugj jX) =
�
1 + cx2gi

��1=2 �
1 + cx2gj

��1=2
; (8)

if c = 0 then the correlation does not vary over i, j, or g. With constant corre-
lation the correction proposed by Moulton would be correct and there would be
no need to compute cluster-robust standard errors. A second important feature
of the speci�cation is the distribution of vgi. As any distributional assumption
is arbitrary and unveri�able, we do not want our �ndings to be speci�c to the
selection of a normal distribution. To capture the richness of empirical settings
in which bV is typically employed, we allow c to vary over a range of values and
the distribution of vgi to be non-normal.
We initially focus on hypothesis testing for a cluster-level covariate, to re�ect

the understanding that the e¤ect of cluster correlation on hypothesis testing
is most pronounced when the covariate under test is highly correlated within
clusters. We then go on to explore the e¤ect on hypothesis testing when the
covariate is not as highly correlated within clusters.5

Cluster-Level Covariate
To capture the e¤ect of cluster variation on hypothesis testing for a cluster-

level covariate, let

xgi = xg;

with fxgg a sequence of independent Bernoulli random variables with equal
probability of 0 or 1. As written this is a pure treatment model, but for a
model with multiple covariates this would correspond to testing for the impact

4For models with multiple covariates, the e¤ective number of clusters may vary depending
on which coe¢ cient is selected for testing (g in (5) depends on the selection vector a).

5Carter, Schnepel and Steigerwald (2013), which contains simulation results for a more
exhaustive set of models, compares the actual and feasible e¤ective number of clusters and
also analyzes the bias, as a proportion of the MSE, for V̂a.
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of class size on student test scores in a data set with equal numbers of each of
two class sizes. Importantly, because the number of clusters in which xg takes
non-zero values grows with the sample size, the cluster-invariant covariate is
distinct from a cluster-speci�c �xed e¤ect and the statistic Z is consistent for
hypothesis testing on �1.
We display in Figure 1 the test size as a function of the feasible e¤ective

number of clusters. The test size depends on three distinct components of
the data (the design of cluster sizes, the value of c, and the error distribution)
and this dependence could prevent the emergence of a clear relation between
the feasible e¤ective number of clusters and the test size. For example, if the
level of average dependence between the error terms in a cluster a¤ects the
behavior of the test statistic, then results with c = 0:9, for which the average
dependence is 0.75, would di¤er from the results with c = 9, for which the
average dependence is 0.44.6 Happily, there is a clear relation between the
feasible e¤ective number of clusters and the test size. We see that the empirical
test size rises sharply above the nominal size of 5%, but does so only when the
feasible e¤ective number of clusters falls below 10. This result is robust to the
degree of heteroskedasticity c and to the underlying error distribution.7

Figure 1
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We saw in Figure 1 the dramatic increase in the test size as the feasible
e¤ective number of clusters declined. What observable features of the data lead
to such a sharp increase in the test size? We display in Figure 2 the e¤ective

6Larger values of c reduce the in�uence of "g , thereby reducing the within-cluster error
correlation.

7The innovation vgi is allowed to be non-normal. For the elements in Figure 2 labeled:
�t-dist�the innovation is t(4), and �log norm�the innovation is log (N (0; 1)), both standardized
to have mean 0 and variance 1.
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number of clusters as a function of the coe¢ cient of variation of cluster sizes.
The plot is quite revealing. From the pattern represented by the squares, which
indicate the median value (over 1000 simulations) for each design, we see that
the e¤ective number of clusters declines sharply in cluster size variation, nearly
falling to the minimum size of 1 when the variation mirrors the population
distribution across US states. From the length of the vertical lines, which
indicate the maximum and minimum values (over 1000 simulations) for each
design, we see that the e¤ective number of clusters also depends on the pattern
of values for the covariate, and can fall sharply even for a design with no variation
in cluster size.

Figure 2
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Figure 2 reveals that observable features of the data can indicate a substan-
tial reduction in the e¤ective number of clusters. Does the feasible e¤ective
number of clusters show a similar pattern? In Figure 3 we display the feasible
e¤ective number of clusters as a function of the number of clusters. The �gure
reveals a clear pattern. The majority of simulation settings fall near the 45
degree line, indicating a near match between the e¤ective number of clusters
and the feasible counterpart we suggest. For simulation settings in which there
is a much lower degree of correlation within clusters, the consequence of setting
the correlation to 1 when constructing the feasible measure is revealed. For
these settings, the feasible measure lies below the e¤ective number of clusters,
indicating that the feasible measure is a conservative bound. A conservative
bound can be useful: If a researcher �nds the feasible e¤ective number of clus-
ters is relatively large, then there is strong evidence that critical values from a
normal distribution are appropriate.
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Figure 3
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Individual-Level Covariate
To capture the e¤ect of cluster variation on hypothesis testing for a contin-

uous, individual-level covariate, we consider both

(a) xgi = zg + zgi (b) xgi =
p
2 � zgi,

where fzgg and fzgig are sequences of independent N (0; 1) random variables.
This would correspond to testing the e¤ect of parental income on test scores.
The two equations for xgi represent two levels of correlation within clusters: in
(a) the correlation is .5 while in (b) the correlation is 0, which would re�ect
the presence (or absence) of sorting into classes by parental income. We also
consider xgi = zg, to show that the results in Figure 1 are not speci�c to a
binary covariate.
Figure 4 displays the test size as a function of the feasible e¤ective number

of clusters. What emerges clearly is the importance of the degree of cluster
correlation in the covariate under test. The left panels, in which the covariate
exhibits substantial cluster correlation, reveal the striking pattern observed in
Figure 1. The test size can far exceed the nominal size, but does so only when
the feasible e¤ective number of clusters falls below 10. Again the result is
robust to the degree of heteroskedasticity and the underlying error distribution.
For the right panel, in which the covariate is uncorrelated within clusters, there
is no evidence of in�ated test size.

15



Figure 4
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4 Empirical Settings

To illustrate how the research design impacts the e¤ective number of clusters,
we calculate the e¤ective number of clusters for two empirical settings in which
unobserved shocks that are common within a cluster naturally arise: data on
children grouped by classroom and workers grouped by industry. Importantly,
growth of the sample size can occur through the addition of classrooms or in-
dustries, so that each of these settings accommodates the assumption that the
number of clusters grows with the sample size.
The �rst setting corresponds to measurement of the impact of class size on

student achievement. Krueger (1999) analyzes data from the STAR experi-
ment in which students were randomly assigned to classrooms of di¤erent sizes,
identifying the class size e¤ect using the following regression model

agi = �0 + �1sg + z
T
gi + ugi;

where agi is the test score of student i in classroom g, sg is the number of
students in classroom g and zgi captures other observed determinants of student
performance, including the race, gender and socioeconomic status of student
i. For kindergarten students, the public use version of the data employed by
Krueger contains 5,743 students grouped into 318 classrooms. In describing
regression results Krueger reports a sample size corresponding to the number of
children (Table V, p. 513). Yet for the purpose of inference, even regarding a
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coe¢ cient on a cluster-varying covariate, the appropriate sample size is based
on the number of classrooms.
As classrooms form the clusters, the data set has G = 318, which appears

to be well in excess of the number needed to use Gaussian critical values. Yet
the number of students varies across classrooms, from a low of 9 to a high of
27. The mean number of students per classroom is 18 with a variance of 15.7.
To determine how the variation in cluster sizes, together with other sources of
variation in the design, impacts inference, we compute the e¤ective number of
clusters for test of hypotheses on �1 and �nd G

�A = 192. While the variation
in the design across clusters has reduced the e¤ective number of clusters to 60
percent of the actual number of clusters, the initial large number of clusters
leaves the e¤ective number of clusters su¢ ciently large that Gaussian inference
is reliable.
The second setting corresponds to measurement of the impact of injury risk

on wages. Hersch (1998) analyzes data on individual wages from the Current
Population Survey, together with injury rates for workers by industry:

wgi = �0 + �1rg + z
T
gi + ugi;

where wgi is the (logarithm of the) wage for individual i working in industry g, rg
is the industry-speci�c injury rate and zgi captures other observed determinants
of individual wages. For male workers, the Hersch data set (Table 3, Panel B,
column 1) contains 5,960 workers grouped into 211 industries.8

As industries form clusters, the data set has G = 211, which again appears
to be well in excess of the number needed to use Gaussian critical values. The
number of workers varies dramatically across industries, ranging from a low of
1 to a high of 517. The mean number of workers per industry is 28 with a
variance of 2,474. For test of hypotheses on �1, we compute G

�A = 19, which
indicates caution in using Gaussian critical values. In this setting the degree of
variation in cluster sizes, together with other sources of variation in the design,
is large enough to drive the e¤ective number of clusters into a warning area,
even though the actual number of clusters is quite large.9

The e¤ective number of clusters calculated in these empirical examples is
in line with our simulation results presented in Section 3. The Krueger setting
(the coe¢ cient of variation for cluster sizes is cv = 22) contains less cluster
heterogeneity than the �rst unbalanced simulation design of one large group
with 124 observations and 99 groups with 24 observations (cv = 40). The cluster
size heterogeneity in Hersch (cv = 176) is similar to the variation in the designs
including one large group of more than 420 observations and 99 groups with 21
or less observations. For these designs, the e¤ective number of clusters is very
small compared to the actual number of clusters. Hersch provides an empirical

8We thank Colin Cameron for providing the data needed to replicate the Hersch results.
9 In some speci�cations Hersch (1998) also includes occupation-speci�c injury rates and

clusters by either occupation or industry. Cameron, Gelbach and Miller (2011) replicate
Hersch�s results for men and compare clustering on industry and occupation with clustering by
industry or occupation. The impact of cluster heterogeneity in multi-way clustering scenarios
is left for future research.
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setting in which the degree of cluster heterogeneity can lead to large increases
in the mean squared error of the conventional cluster-robust variance estimator
and a downward bias of test statistics. Along with the simulation results, these
examples help emphasize the importance of calculating the e¤ective number of
clusters�even when the number of clusters is large�to gauge whether inference
using the cluster-robust t statistic is appropriate.

5 Remarks

Consistency of the cluster-robust variance estimator, together with a null dis-
tribution for the resultant t test statistic as the number of clusters grows large,
have previously been established under the assumption of equally sized clusters.
We allow the size of clusters to vary and establish conditions under which paral-
lel asymptotic results hold. Our theory yields a sample speci�c adjustment to
the number of clusters, which we term the e¤ective number of clusters. The key
innovation is that it is the e¤ective number of clusters that must grow without
bound. The e¤ective number of clusters replaces the number of clusters; if
the e¤ective number of clusters is large, then the asymptotic theory provides a
reliable guide to inference.
Use of the e¤ective number of clusters as a measure of the adequacy of the

asymptotic approximation is related to degrees of freedom corrections in related
testing problems. For data with error covariance matrices that are not block
diagonal, in which a bandwidth parameter mirrors the role of cluster sizes, Sun
(2014) derives an "equivalent degrees of freedom", where the adjustment to the
degrees of freedom is a function of the bandwidth.
The e¤ective number of clusters depends on two sample speci�c measures

in addition to variation in cluster sizes. First, the measure depends on the
cluster-speci�c error covariance matrices. As these matrices are latent, direct
calculation of the e¤ective number of clusters is infeasible. The assumption
of perfect within-cluster error correlation provides a useful lower bound on the
e¤ective number of clusters. When this feasible measure of the e¤ective number
of clusters is large, Gaussian critical values can be used with the cluster-robust
t test statistic.
Second, the e¤ective number of clusters depends on how the realized values

of the covariates are distributed across clusters. This is the essence of the
sample speci�c nature of the e¤ective number of clusters. Because in virtually
all data sets the realized values of the covariates are not identical across clusters,
the e¤ective number of clusters will be less than the number of clusters. In
consequence, the e¤ective number of clusters should be measured in virtually
all studies that use cluster-robust inference.
A researcher should calculate the e¤ective number of clusters to determine if

the measure obtained from their sample is large enough to use Gaussian critical
values. A natural question arises: If the e¤ective number of clusters is not
large, then how should critical values be obtained? Use of critical values from
a t distribution is argued for by Kott (1994). Although his analysis does not
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contain formal asymptotic results, he suggests that the degrees of freedom should
be selected to mirror the variation of the cluster-robust variance estimator. In
a related analysis, Imbens and Kolesar (2012) argue for the use of critical values
that match the �rst two moments of the distribution of the variance ratio to
the distribution of a �2 random variable. As we establish that the variation
of the cluster-robust variance estimator depends on the e¤ective number of
clusters, the logical implication would be to set the degrees of freedom for the t
distribution equal to the e¤ective number of clusters.
The appeal of this approach to the problem at hand would be enhanced by

the ability to bound the error introduced by use of the t distribution to ap-
proximate the �nite sample distribution of Z. To understand the di¢ culty in

constructing such a bound, consider the behavior of eZ = aT(�̂��0)peVa , which uses

the (infeasible) unbiased estimator eVa. Even under homogeneous clusters, for

which G
eVa
Va
� �2G, eZ � t(G) because the numerator and denominator of eZ are

correlated. The error from approximating eZ by a t distribution is magni�ed
under cluster heterogeneity because G�

eVa
Va
is not a �2(G�) random variable. A

further source of approximation error is introduced by use of bVa, rather thaneVa, to construct the test statistic Z. Because it is di¢ cult to bound the ap-
proximation error that these three sources induce, use of critical values from a
t(G�) distribution could lead to di¢ culty in controlling the size of the test.

An alternative approach is to use critical values from a re-sampling method,
as Cameron, Gelbach and Miller recommend when clusters are equal in size
and G is small. MacKinnon and Webb (2013) compare a re-sampling method
with inference based on a t(G�) distribution. They �nd that, over a range
of simulations in which clusters are unequal in size, the re-sampling method
often yields an empirical test size that is closer to the nominal level. Analytic
treatment of these approaches under a full range of cluster heterogeneity remains
a topic for further study.
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6 Appendix

6.1 Technical Proofs

Verification of Result 1: Let X�
g be the n � k covariate matrix with all

rows that do not correspond to cluster g set to zero.
Part a: The cluster speci�c estimator �̂g is constructed with a generalized
inverse to allow both for cluster invariant covariates and for clusters with ng < k.
Observe that because XTy =

P
gX

�T
g y,

�̂ =
X
g

�
XTX

��1
XT
g Xg

�
XT
g Xg

��
X�T
g y �

X
g

Ag�̂g; (9)

where
�
XT
g Xg

��
is a generalized inverse.10 As V � V ar

�
�̂jX

�
, the cluster

representation of V in (4) follows directly from (9). To derive the cluster
representation of bV in (4), note that XT

g Xg = X
�T
g X�

g = X
�T
g X. Hence

X�T
g

�
y �X�̂

�
=

h
X�T
g �X�T

g X
�
XTX

��1
XT
i
y

= XT
g Xg

h�
XT
g Xg

��
X�T
g �

�
XTX

��1
XT
i
y

= XT
g Xg

�
�̂g � �̂

�
:

Thus

Ag

�
�̂g � �̂

�
=
�
XTX

��1
X�T
g

�
y �X�̂

�
=
�
XTX

��1
XT
g ûg; (10)

because
�
y �X�̂

�
= û and X�T

g û = XT
g ûg. Hence the cluster representation

of bV in (4) follows directly from (10).
Part b: The estimator bV is a function of the residuals

y �X
�
XTX

��1
XTy = (In ��X) y = û;

where �X = X
�
XTX

��1
XT. These residuals can be decomposed into two

components

û = (In ��G +�G ��X) y = (In ��G) y + (�G ��X) y = ûW + ûB ;

where �G =
P

gX
�
g

�
X�T
g X�

g

��
X�T
g is the projection operator onto the cluster

speci�c models. The residual component ûW captures the within cluster vari-
ation while the residual component ûB captures the between cluster variation.

10Because the covariate matrix may not be of full column rank within cluster g, we
use the generalized inverse

�
XT
g Xg

�� de�ned such that
�
XT
g Xg

� �
XT
g Xg

��
XT
g = XT

g
(Harville 1997, Theorem 12.3.4 part (5), p. 167). The generalized inverse, for which�
XT
g Xg

� �
XT
g Xg

��
X�T
g = X�T

g also holds, presents the issue that �̂g is not uniquely de�ned,
but any convenient choice of generalized inverse results in an identical variance estimator.
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The quantity bV depends on the residuals through the linear functionXT
g ûg =

X�T
g û. Hence,

XT
g ûg = X

�T
g ûW +X�T

g ûB :

Because the least squares residuals are orthogonal to the corresponding model
space,

X�T
g ûW = X�T

g (In ��G) y
=

�
X�T
g �X�T

g

�
y = 0;

and

X�T
g ûB = X�T

g (�G ��X) y
=

�
X�T
g �ATgXT

�
y 6= 0:

Thus, bV is only a function of between cluster variation.

Proof of Lemma 1: Let Qg := aTAg
�
�̂g � �

�
. Because the components�

�̂g � �
�
are independent across clusters, E

�eVa � Va�2 = Pg V ar
�
Q2g
�
. Let

cg be de�ned such that Qg = cTg Zg, where ug = 

1=2
g Zg with fZgg a sequence

of uncorrelated random variables as in Assumption 1(ii). We then have

E
�
Q2g
�
=

X
i

c2gi

E
�
Q4g
�
=

X
i

c4giEZ4gi + 3
X
i 6=j

c2gic
2
gjE

�
Z2giZ

2
gj

�
� M4

X
i

c4gi + 3
X
i 6=j

c2gic
2
gj

= 3

 X
i

c2gi

!2
+ (M4 � 3)

X
i

c4gi:

Thus,

E

24 eVa � Va
Va

!2������X
35 �

242X
g

 X
i

c2gi

!2
+ (M4 � 3)

X
i

c4gi

3524X
g;i

c2gi

35�2 :
Note that g =

P
i c
2
gi, so that

P
g

�P
i c
2
gi

�2
= G2 +

P
g

�
g � 

�2
andP

g;i c
4
gi =

P
g

Png
i=1

�
c2gi �

g
ng

�2
+
P

g

2g
ng
, hence

E

24 eVa � Va
Va

!2������X
35 � 1 + � (
; X)

G

�
2 +

M4 � 3
n�

�
;
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where n� = n
G

�
1 +

P
g 

2
g

�
n=G�ng

ng

�
P

g 
2
g

��1 �
1 +

P
g;i(c

2
gi�g=ng)

2P
g 

2
g=ng

��1
.

If we replace the �nite fourth moment assumption with the normality as-
sumption, then M4 = 3 and

E

8<:
" eVa � Va

Va

#2������X
9=; =

2

G
(1 + � (
; X)) :

Q.E.D.

Proof of Lemma 2: The setting of the problem follows from the expansion

aT
�bV � eV � a =X

g

aTAg

��b� � ���b� � ��T � 2�b�g � ���b� � ��T�ATg a:
We use the fact that

P
g Ag = I, to introduce the matrix

�
Ag � 1

GI
�
, together

with the fact
P

g Ag
b�g = b� to obtain

aT
�bV � eV � a =

1

G
aT
�b� � ���b� � ��T a+X

g

aTAg

�b� � ���b� � ��T �Ag � 1

G
I

�T
a+

� 2
G
aT
�b� � ���b� � ��T a� 2X

g

aTAg

�b�g � ���b� � ��T �Ag � 1

G
I

�T
a:

Combining terms on the right side yields

aT
�bV � eV � a = � 1

G
aT
�b� � ���b� � ��T a+X

g

aTAg

�b� � ���b� � ��T �Ag � 1

G
I

�T
a+

�2
X
g

aTAg

�b�g � ���b� � ��T �Ag � 1

G
I

�T
a: (11)

A bound for EX
���aT �bV � eV � a���, where EX denotes expectation conditional on

X, follows directly from the expansion (11) as

EX
���aT �bV � eV � a��� � EX

���� 1GaT �b� � ���b� � ��T a
����+ (12)

+EX

�����X
g

aTAg

�b� � ���b� � ��T �Ag � 1

G
I

�T
a

�����+
+2EX

�����X
g

aTAg

�b�g � ���b� � ��T �Ag � 1

G
I

�T
a

����� :
As the �rst two terms on the right side are squared norms of vectors (we show
details for the second term below), we can ignore the absolute value for these
terms.
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The �rst term in (12) is

EX
�
1

G
aT
�b� � ���b� � ��T a� = Va

G
; (13)

which is the magnitude of the downward bias present even when clusters are
homogeneous.
For the second term in (12) �rst noteX

g

aTAg

�b� � ���b� � ��T �Ag � 1

G
I

�T
a

=
X
g

aT
�
Ag �

1

G
I

��b� � ���b� � ��T �Ag � 1

G
I

�T
a;

where the second line follows from the fact that
P

g Ag = I. Because it is the

squared norm of the a vector EX
����Pg a

TAg

�b� � ���b� � ��T �Ag � 1
GI
�T
a

����
equals

EX

"X
g

aT
�
Ag �

1

G
I

��b� � ���b� � ��T �Ag � 1

G
I

�T
a

#
(14)

=
X
g

aT
�
Ag �

1

G
I

�
V

�
Ag �

1

G
I

�T
a;

which is an upward bias due to the heterogeneity of the covariate matrices across
clusters.
For the third term in (12), we have�����X

g

aTAg

�b�g � ���b� � ��T �Ag � 1

G
I

�T
a

����� �X
g

���aT hAg �b�g � ��i���
������b� � ��T

�
Ag �

1

G
I

�T
a

�����
�
 X

g

���aT hAg �b�g � ��i���2
!1=20@X

g
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where the �rst inequality follows from the Triangle Inequality. Then by the
Cauchy-Schwarz Inequality
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Let Bg := AgV ar
�
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P
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From (13), (14) and (15) we have
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Q.E.D.

Proof of Theorem 1: The �rst step is to establish that

T = aT
�b� � �0� =paTV a N (0; 1) :

We have

T =
GX
g=1

Dg;

where DgjX := aTAg

�b�g � �0� =paTV a forms a sequence of independent ran-
dom variables that satisfy E (DgjX) = 0.

E (DgjX) = 0 and V ar (DgjX) = aTAgV ar
�b�g���X�ATg a:

For s2G :=
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�
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hence by the Lyapunov Central Limit Theorem the distribution function of
DgjX converges to a standard normal. The convergence is almost surely over
X, so

T  N (0; 1) :

The test statistic

Z = T

�
aTV a

aT bV a
� 1
2

;

will converge in distribution to T if a
T bV a
aTV a

P! 1, by Slutsky�s lemma.

It is enough to show that
��� eVa�VaVa

��� and ��� eVa�bVaVa

��� are each oP (1). Lemma 1

and Chebyshev�s Inequality imply that
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Under Assumption 2 (i)-(ii) the expected value of this bound goes to 0, so

P
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In order to show that
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0. This follows because P
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��� > "���Xo is bounded and, hence, is uni-
formly integrable as a function of X. Under uniform integrability, conver-

gence in probability implies convergence in expectation so P
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By Lemma 2 and Markov�s inequality
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Under Assumption 2 (i) and (iii) the bound goes to 0 in probability. As noted

above, because the probability is bounded, P
n��� eVa�bVaVa

��� > "���Xo P! 0 implies

P
n��� eVa�bVaVa

��� > "o! 0.

Because 
 is unknown in practice it is useful to note that this result holds
for any error distribution in the set W . Over this set

lim
n!1

P

(����� bVaVa � 1
����� > "

)
= 0;

which implies convergence in distribution. Q.E.D.
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6.2 Simulation Details

We construct a sequence of 101 cluster-size designs, in which the proportion of
the sample in the �rst cluster grows monotonically from 1 percent to 37 percent.
The full description of design variation is contained in Table 1.

Table 1: Cluster-Size Designs
Design 1 n1 = 25 n2 = � � � = n100 = 25
Design 2 n1 = 34 n2 = � � � = n10 = 24 n11 = � � � = n100 = 25
Design 3 n1 = 44 n2 = � � � = n20 = 24 n21 = � � � = n100 = 25
Design 11 n1 = 124 n2 = � � � = n100 = 24
Design 12 n1 = 133 n2 = � � � = n10 = 23 n11 = � � � = n100 = 25
Design 101 n1 = 1015 n2 = � � � = n100 = 15

To construct the �gures that display the e¤ective number of clusters as a
function of cluster size variation, for each cluster-size design the covariate matrix
is simulated 1000 times.
To construct the empirical test size as a function of the e¤ective number

of clusters G� we �rst generate 5 covariate matrices X from each cluster-size
design simulation, yielding 505 distinct values of X (and so 505 distinct values
for G�). For each value of X we then perform the following procedure. Select
the �rst error speci�cation (detailed in Table 2) and simulate 1000 values of u.
(Each simulated error vector u has length 2500.) The empirical test size is then
the rejection probability over the 1000 data sets fX;ug that share a common
X. Repeat the procedure for error speci�cations 2 through 9.

Table 2: Error Speci�cations11 vgi = cxgi � �gi
Speci�cation 1a c = 0 �gi � N (0; 1)
Speci�cation 1b c = 0:9 �gi � N (0; 1)
Speci�cation 1c c = 9 �gi � N (0; 1)
Speci�cation 2a c = 0 �gi =

1p
2
�gi �gi � t(4)

...
Speci�cation 3c c = 9 �gi =

1p
4:67

(�gi � 1:65) �gi � logN (0; 1)

11For each speci�cation, �gi has mean 0 and variance 1.
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